A novel imbalanced fault diagnosis method based on area identification conditional generative adversarial networks

Author:

Xu Yuan12,Zou Xun12ORCID,Ke Wei3,Zhu Qun‐Xiong12,He Yan‐Lin12ORCID,Zhang Ming‐Qing12ORCID,Zhang Yang12

Affiliation:

1. College of Information Science & Technology Beijing University of Chemical Technology Beijing China

2. Engineering Research Center of Intelligent PSE, Ministry of Education of China Beijing China

3. Faculty of Applied Sciences Macao Polytechnic University Macao SAR People's Republic of China

Abstract

AbstractAs a vital technology for ensuring the stable operation of industrial equipment, fault diagnosis has received a lot of research in recent years. Most complex industrial processes are in normal working conditions during operation, so the amount of data collected under normal working conditions is much larger than that under fault working conditions. The uneven number of samples will lead to the imbalance of datasets and make it a challenging task to assure the overall accuracy. To address the issue, an innovative imbalanced fault diagnostic approach based on area identification conditional generative adversarial networks (AICGAN) is proposed. First, considering the imbalance between normal data (majority data) and fault data (minority data), a hybrid data generation method combining over‐sampling and AICGAN generator is proposed, which effectively extends the limited minority data and overcomes the inclination to majority data to some extent. On one hand, the over‐sampling algorithm reduces the impact of dataset imbalance on the AICGAN training process by linear interpolation. On the other hand, the trainable generator can create samples similar to real samples by learning the generation principle so as to enrich the minority data information and reduce the sample stacking caused by linear synthesis. The two sample production methods complement each other. Combining the raw samples, over‐sampled samples, and samples generated by generator, a new dataset is constructed. Second, the new dataset is used to train the AICGAN discriminator. In addition, in order to generate samples with higher value, an auxiliary discrimination layer is added to the discriminator to control the pattern of generated samples. Third, the balanced dataset containing the linear synthesis samples and the samples generated by the trained generator are put into the classifier to obtain the fault diagnosis. The effectiveness of the proposed approach for fault diagnosis based on AICGAN is verified using the three‐phase flow facility (TFF) dataset and the Tennessee Eastman (TE) dataset. The experimental results demonstrate that the AICGAN‐based fault diagnosis method achieves high F1 scores on the imbalanced dataset.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3