Influence of polyethyleneimine layer and zinc nitrate on morphology and structure of PES‐based membranes with highly selective properties

Author:

Alimadadi Arash1,Parvizian Fahime1,Bandehali Samaneh1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran

Abstract

AbstractIn this paper, nanofiltration (NF) polymer membranes based on polyestersulphone (PES) were prepared by the phase inversion method. Polyethyleneimine (PEI) and zinc nitrate (Zn(NO3)2) as a surface modifier and glutealdehyde (GA) as cross‐linker was used. Fourier transform infrared spectroscopy analysis (FTIR) was used to confirm the chemical composition on the membrane surface. Membranes were also characterized using field emission scanning electron microscopy (FESEM) and 3D surface images. Water contact angle, average pore size and porosity measurements, water flux, salt rejection, and membrane anti‐fouling ability were discussed. Modified membranes showed a smoother surface than the original membrane. The amount of pure water flux decreased with increasing the concentration of modifiers at the surface, but the yield of Na2SO4 salt increased, 53% in virgin membrane and 83% in M3 membrane. Modified membranes had better anti‐fouling and hydrophilicity properties than primary membranes. The lowest contact angle value was 26.2° for M4. Also, the best anti‐clogging comparable properties were for the M3 membrane with FRR = 63.37%, Rr = 10.69%, Rir = 36.6%, and Rt = 47.3%. By increasing the concentration of modifiers, the removal of CuNO3 and CuSO4 improved that the M1 membrane (97.59%) had the highest Cu(NO3)2 separation and the M4 membrane (87.5%) had the most increased CuSO4 separation.

Publisher

Wiley

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3