Differential efficacy of two small molecule PHLPP inhibitors to promote nucleus Pulposus cell health

Author:

Zhang Changli1ORCID,Gordon Madeleine D.1ORCID,Joseph Katherine M.1,Diaz‐Hernandez Martha E.1,Drissi Hicham12,Illien‐Jünger Svenja13ORCID

Affiliation:

1. Department of Orthopaedics Emory University School of Medicine Atlanta Georgia USA

2. Atlanta VA Health Care System Decatur Georgia USA

3. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta Georgia USA

Abstract

AbstractBackgroundIntervertebral disc (IVD) degeneration is associated with chronic back pain. We previously demonstrated that the phosphatase pleckstrin homology domain and leucine‐rich repeat protein phosphatase (PHLPP) 1 was positively correlated with IVD degeneration and its deficiency decelerated IVD degeneration in both mouse IVDs and human nucleus pulposus (NP) cells. Small molecule PHLPP inhibitors may offer a translatable method to alleviate IVD degeneration. In this study, we tested the effectiveness of the two PHLPP inhibitors NSC117079 and NSC45586 in promoting a healthy NP phenotype.MethodsTail IVDs of 5‐month‐old wildtype mice were collected and treated with NSC117079 or NSC45586 under low serum conditions ex vivo. Hematoxylin & eosin staining was performed to examine IVD structure and NP cell morphology. The expression of KRT19 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human NP cells were obtained from patients with IVD degeneration. The gene expression of KRT19, ACAN, SOX9, and MMP13 was analyzed via real time qPCR, and AKT phosphorylation and the protein expression of FOXO1 was analyzed via immunoblot.ResultsIn a mouse IVD organ culture model, NSC45586, but not NSC117079, preserved vacuolated notochordal cell morphology and KRT19 expression while suppressing cell apoptosis, counteracting the degenerative changes induced by serum deprivation, especially in males. Likewise, in degenerated human NP cells, NSC45586 increased cell viability and the expression of KRT19, ACAN, and SOX9 and reducing the expression of MMP13, while NSC117079 treatment only increased KRT19 expression. Mechanistically, NSC45586 treatment increased FOXO1 protein expression in NP cells, and inhibiting FOXO1 offset NSC45586‐induced regenerative potential, especially in males.ConclusionsOur study indicates that NSC45586 was effective in promoting NP cell health, especially in males, suggesting that PHLPP plays a key role in NP cell homeostasis and that NSC45586 might be a potential drug candidate in treating IVD degeneration.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3