DIWGAN‐WBSN: A novel health monitoring approach for wireless body sensor networks

Author:

Jayasutha D.1ORCID,Hemamalini V.2,Sangeetha S.3,Yeruva Ajay Reddy4

Affiliation:

1. Assistant Professor, Department of Computer Science and Engineering Hindusthan Institute of Technology Coimbatore Tamil Nadu India

2. Associate Professor, Department of Networking and Communications SRM Institute of Science and Technology Chennai India

3. Professor, Department of Computer Science and Engineering Karpagam College of Engineering Coimbatore Tamil Nadu India

4. Independent Researcher 5744 Owens Dr Pleasanton CA USA

Abstract

SummaryWireless body sensor network (WBSN) is essential for monitoring patients' health problems and offers a low‐cost option for various healthcare applications. In this manuscript, a Novel Health Monitoring Approach for WBSNs (DIWGAN‐WBSN) is proposed, which uses Dual Interactive Wasserstein Generative Adversarial Network (DIWGAN) optimized with War Strategy Optimization Algorithm (WSOA). After sensing the aforementioned attribute information, it is the responsibility of WBSN nodes to transfer the sensed data to the sink node. The Volcano Eruption Algorithm (VEA) is applied to select the optimum cluster heads in WBSN. The results from VEA are fed to the target node; it consists of DIWGAN to classify the health records and to portray the patient's health status. Generally, DIWGAN does not adopt any optimization methods for measuring the ideal parameters and guaranteeing accurate health monitoring and risk assessment. So the proposed WSOA is considered to enhance the DIWGAN. The proposed method is activated in MATLAB; its efficacy is estimated under performance metrics, like precision, specificity, accuracy, and energy utilization. The proposed approach attains 23.9%, 21.34%, and 51.09% higher accuracy; 21.45%, 13.94%, and 20.6% higher precision; 31.32%, 29.61%, and 11.03% higher specificity; and 20.9%, 19.87%, and 24.6% lower energy utilization for HD classification using the Cleveland database than the existing methods like back propagation neural network‐based risk detection in WBSN for health monitoring, random forest algorithm–based health monitoring in WBSN, and ensemble deep learning and feature fusion for health monitoring using WBSN methods, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3