Affiliation:
1. Institute of Functional Porous Materials The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
2. State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310058 China
3. Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 China
4. Institute of Modern Optics Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology Nankai University Tianjin 300350 China
Abstract
AbstractDeveloping cost‐efficient trifunctional catalysts capable of facilitating hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) activity is essential for the progression of energy devices. Engineering these catalysts to optimize their active sites and integrate them into a cohesive system presents a significant challenge. This study introduces a nanoflower (NFs)‐like carbon‐encapsulated FeNiPt nanoalloy catalyst (FeNiPt@C NFs), synthesized by substituting Co2+ ions with high‐spin Fe2+ ions in Hofmann‐type metal‐organic framework, followed by carbonization and pickling processes. The FeNiPt@C NFs catalyst, characterized by its nitrogen‐doped carbon‐encapsulated metal alloy structure and phase‐segregated FeNiPt alloy with slight surface oxidization, exhibits excellent trifunctional catalytic performance. This is evidenced by its activities in HER (−25 mV at 10 mA cm−2), ORR (half‐wave potential of 0.93 V), and OER (294 mV at 10 mA cm−2), with the enhanced water oxidation activity attributed to the high‐spin state of the Fe element. Consequently, the Zn‐air battery and anion exchange membrane water electrolyzer assembled by FeNiPt@C NFs catalyst demonstrate remarkable power density (168 mW cm−2) and industrial‐scale current density (698 mA cm−2 at 1.85 V), respectively. This innovative integration of multifunctional catalytic sites paves the way for the advancement of sustainable energy systems.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
National Synchrotron Radiation Laboratory
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献