Constructing FeNiPt@C Trifunctional Catalyst by High Spin‐Induced Water Oxidation Activity for Zn‐Air Battery and Anion Exchange Membrane Water Electrolyzer

Author:

Pan Yangdan1ORCID,Li Yuwen2,Nairan Adeela1,Khan Usman1,Hu Yan3,Wu Baoxin3,Sun Lu4,Zeng Lin3ORCID,Gao Junkuo1ORCID

Affiliation:

1. Institute of Functional Porous Materials The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China

2. State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310058 China

3. Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 China

4. Institute of Modern Optics Tianjin Key Laboratory of Micro‐scale Optical Information Science and Technology Nankai University Tianjin 300350 China

Abstract

AbstractDeveloping cost‐efficient trifunctional catalysts capable of facilitating hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) activity is essential for the progression of energy devices. Engineering these catalysts to optimize their active sites and integrate them into a cohesive system presents a significant challenge. This study introduces a nanoflower (NFs)‐like carbon‐encapsulated FeNiPt nanoalloy catalyst (FeNiPt@C NFs), synthesized by substituting Co2+ ions with high‐spin Fe2+ ions in Hofmann‐type metal‐organic framework, followed by carbonization and pickling processes. The FeNiPt@C NFs catalyst, characterized by its nitrogen‐doped carbon‐encapsulated metal alloy structure and phase‐segregated FeNiPt alloy with slight surface oxidization, exhibits excellent trifunctional catalytic performance. This is evidenced by its activities in HER (−25 mV at 10 mA cm−2), ORR (half‐wave potential of 0.93 V), and OER (294 mV at 10 mA cm−2), with the enhanced water oxidation activity attributed to the high‐spin state of the Fe element. Consequently, the Zn‐air battery and anion exchange membrane water electrolyzer assembled by FeNiPt@C NFs catalyst demonstrate remarkable power density (168 mW cm−2) and industrial‐scale current density (698 mA cm−2 at 1.85 V), respectively. This innovative integration of multifunctional catalytic sites paves the way for the advancement of sustainable energy systems.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Synchrotron Radiation Laboratory

Publisher

Wiley

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3