High Pressure‐Driven Magnetic Disorder and Structural Transformation in Fe3GeTe2: Emergence of a Magnetic Quantum Critical Point

Author:

Dang Ngoc‐Toan12,Kozlenko Denis P.3,Lis Olga N.34,Kichanov Sergey E.3,Lukin Yevgenii V.3,Golosova Natalia O.3,Savenko Boris N.3,Duong Dinh‐Loc5,Phan The‐Long6,Tran Tuan‐Anh7,Phan Manh‐Huong8ORCID

Affiliation:

1. Institute of Research and Development Duy Tan University Da Nang 550000 Vietnam

2. Faculty of Environmental and Natural Sciences Duy Tan University Da Nang 550000 Vietnam

3. Frank Laboratory of Neutron Physics JINR Moscow Reg. Dubna 141980 Russia

4. Kazan Federal University Kazan 420008 Russia

5. Center for Integrated Nanostructure Physics Institute for Basic Science Suwon 16419 Republic of Korea

6. Faculty of Engineering Physics and Nanotechnology VNU‐University of Engineering and Technology 144 Xuan Thuy, Cau Giay Ha Noi 100000 Vietnam

7. Ho Chi Minh City University of Technology and Education Ho Chi Minh 700000 Vietnam

8. Department of Physics University of South Florida Tampa FL 33620 USA

Abstract

AbstractAmong the recently discovered 2D intrinsic van der Waals (vdW) magnets, Fe3GeTe2 (FGT) has emerged as a strong candidate for spintronics applications, due to its high Curie temperature (130 – 220 K) and magnetic tunability in response to external stimuli (electrical field, light, strain). Theory predicts that the magnetism of FGT can be significantly modulated by an external strain. However, experimental evidence is needed to validate this prediction and understand the underlying mechanism of strain‐mediated vdW magnetism in this system. Here, the effects of pressure (0 – 20 GPa) are elucidated on the magnetic and structural properties of Fe3GeTe2 by means of synchrotron Mössbauer source spectroscopy, X‐ray powder diffraction and Raman spectroscopy over a wide temperature range of 10 – 290 K. A strong suppression of ferromagnetic ordering is observed with increasing pressure, and a paramagnetic ground state emerges when pressure exceeds a critical value, PPM ≈ 15 GPa. The anomalous pressure dependence of structural parameters and vibrational modes is observed at PC ≈ 7 GPa and attributed to an isostructural phase transformation. Density functional theory calculations complement these experimental findings. This study highlights pressure as a driving force for magnetic quantum criticality in layered vdW magnetic systems.

Funder

European Synchrotron Radiation Facility

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3