Affiliation:
1. Key Laboratory of Chemical Additives for China National Light Industry College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
2. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China
3. Zhejiang Laboratory Hangzhou 311100 P. R. China
Abstract
AbstractAtomic‐level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero‐units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe‐bimetallic energetic metallic triazole framework (CoFe@E‐MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe‐inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin) of −53.15 dB and specific reflection loss (SRL) of −101.24 dB mg−1 mm−1 for CoFe@HPC1000 are achieved. More importantly, the single‐atomic chemical bonding among Co─Fe on the nanopores is captured by extended X‐ray absorption fine structure, which reveals the formation mechanism of nanopore‐confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献