Thermally Oxidized Memristor and 1T1R Integration for Selector Function and Low‐Power Memory

Author:

Pan Zhidong1,Zhang Jielian1,Liu Xueting1,Zhao Lei1,Ma Jingyi1,Luo Chunlai2,Sun Yiming1,Dan Zhiying1,Gao Wei1,Lu Xubing2,Li Jingbo3,Huo Nengjie14ORCID

Affiliation:

1. School of Semiconductor Science and Technology South China Normal University Foshan 528225 P. R. China

2. School of South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 P. R. China

3. College of Optical Science and Engineering Zhejiang University Hangzhou 310027 P. R. China

4. Guangdong Provincial Key Laboratory of Chip and Integration Technology Guangzhou 510631 P. R. China

Abstract

AbstractResistive switching memories have garnered significant attention due to their high‐density integration and rapid in‐memory computing beyond von Neumann's architecture. However, significant challenges are posed in practical applications with respect to their manufacturing process complexity, a leakage current of high resistance state (HRS), and the sneak‐path current problem that limits their scalability. Here, a mild‐temperature thermal oxidation technique for the fabrication of low‐power and ultra‐steep memristor based on Ag/TiOx/SnOx/SnSe2/Au architecture is developed. Benefiting from a self‐assembled oxidation layer and the formation/rupture of oxygen vacancy conductive filaments, the device exhibits an exceptional threshold switching behavior with high switch ratio exceeding 106, low threshold voltage of ≈1 V, long‐term retention of >104 s, an ultra‐small subthreshold swing of 2.5 mV decade−1 and high air‐stability surpassing 4 months. By decreasing temperature, the device undergoes a transition from unipolar volatile to bipolar nonvolatile characteristics, elucidating the role of oxygen vacancies migration on the resistive switching process. Further, the 1T1R structure is established between a memristor and a 2H‐MoTe2 transistor by the van der Waals (vdW) stacking approach, achieving the functionality of selector and multi‐value memory with lower power consumption. This work provides a mild‐thermal oxidation technology for the low‐cost production of high‐performance memristors toward future in‐memory computing applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3