Highly‐Polarized Emission Provided by Giant Optical Orientation of Exciton Spins in Lead Halide Perovskite Crystals

Author:

Kopteva Nataliia E.1ORCID,Yakovlev Dmitri R.1ORCID,Yalcin Eyüp1ORCID,Akimov Ilya A.1ORCID,Nestoklon Mikhail O.1ORCID,Glazov Mikhail M.2ORCID,Kotur Mladen1ORCID,Kudlacik Dennis1ORCID,Zhukov Evgeny A.1ORCID,Kirstein Erik1ORCID,Hordiichuk Oleh34ORCID,Dirin Dmitry N.34ORCID,Kovalenko Maksym V.34ORCID,Bayer Manfred1ORCID

Affiliation:

1. Experimentelle Physik 2 Technische Universität Dortmund 44227 Dortmund Germany

2. Ioffe Institute Russian Academy of Sciences St. Petersburg 194021 Russia

3. Laboratory of Inorganic Chemistry Department of Chemistry and Applied Biosciences ETH Zürich Zürich CH‐8093 Switzerland

4. Laboratory for Thin Films and Photovoltaics Empa‐Swiss Federal Laboratories for Materials Science and Technology Dübendorf CH‐8600 Switzerland

Abstract

AbstractQuantum technologic and spintronic applications require reliable material platforms that enable significant and long‐living spin polarization of excitations, the ability to manipulate it optically in external fields, and the possibility to implement quantum correlations between spins, i.e., entanglement. Here it is demonstrated that these conditions are met in bulk crystals of lead halide perovskites. A giant optical orientation of 85% of excitons, approaching the ultimate limit of unity, in FA0.9Cs0.1PbI2.8Br0.2 crystals is reported. The exciton spin orientation is maintained during the exciton lifetime of 55 ps resulting in high circular polarization of the exciton emission. The optical orientation is robust to detuning of the excitation energy up to 0.3 eV above the exciton resonance and remains larger than 20% up to detunings of 0.9 eV. It evidences pure chiral selection rules and suppressed spin relaxation of electrons and holes, even with large kinetic energies. The exciton and electron–hole recombinations are distinguished by means of the spin dynamics detected via coherent spin quantum beats in magnetic field. Further, electron–hole spin correlations are demonstrated through linear polarization beats after circularly polarized excitation. These findings are supported by atomistic calculations. All‐in‐all, the results establish lead halide perovskite semiconductors as suitable platform for quantum technologies.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference48 articles.

1. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects

2. Best Research ‐ Cell Efficiency Chart https://www.nrel.gov/pv/cell‐efficiency.html(accessed: January 2023).

3. Halide Perovskites for Photonics

4. Hybrid Organic Inorganic Perovskites: Physical Properties and Applications (Eds.:Z. V.Vardeny M. C.Beard) World Scientific 2022.

5. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3