Zinc–Bromine Batteries: Challenges, Prospective Solutions, and Future

Author:

Mahmood Asif12ORCID,Zheng Zhi1,Chen Yuan1ORCID

Affiliation:

1. School of Chemical and Biomolecular Engineering The University of Sydney Darlington NSW 2006 Australia

2. Center for Clean Energy Technology School of Mathematical and Physical Science Faculty of Science University of Technology Sydney Sydney 2007 Australia

Abstract

AbstractZinc‐bromine batteries (ZBBs) have recently gained significant attention as inexpensive and safer alternatives to potentially flammable lithium‐ion batteries. Zn metal is relatively stable in aqueous electrolytes, making ZBBs safer and easier to handle. However, Zn metal anodes are still affected by several issues, including dendrite growth, Zn dissolution, and the crossover of Br species from cathodes to corrode anodes, resulting in self‐discharge and fast performance fading. Similarly, Br2 undergoes sluggish redox reactions on cathodes, which brings several issues such as poor reaction kinetics, the highly corrosive nature of Br species leading to corrosion of separators and poisoning of anodes, and the volatile nature of Br species causing increased internal pressures, etc. These issues are compounded in flowless ZBB configuration as no fresh electrolyte is available to provide extra/fresh reaction species. In this review, the factors controlling the performance of ZBBs in flow and flowless configurations are thoroughly reviewed, along with the status of ZBBs in the commercial sector. The review also summarizes various novel methodologies to mitigate these challenges and presents research areas for future studies. In summary, this review will offer a perspective on the historical evolution, recent advancements, and prospects of ZBBs.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3