Affiliation:
1. Department of Mechanical and Industrial Engineering University of Illinois at Chicago 842 West Taylor St. Chicago IL 60607 USA
2. Department of Nuclear Science & Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
3. Spruce Up Industries Undri – Pisoli Rd Pune Maharashtra 411060 India
Abstract
AbstractEmulsions are widely used in many industrial applications, and the development of efficient techniques for synthesizing them is a subject of ongoing research. Vapor condensation is a promising method for energy‐efficient, high‐throughput production of monodisperse nanoscale emulsions. However, previous studies using this technique are limited to producing small volumes of water‐in‐oil dispersions. In this work, a new method for the continuous synthesis of nanoscale emulsions (water‐in‐oil and oil‐in‐water) is presented by condensing vapor on free‐flowing surfactant solutions. The viability of oil vaporization and condensation is demonstrated under mild heating/cooling using diverse esters, terpenes, aromatic hydrocarbons, and alkanes. By systematically investigating water vapor and oil vapor condensation dynamics on bulk liquid‐surfactant solutions, a rich diversity of outcomes, including floating films, nanoscale drops, and hexagonally packed microdrops is uncovered. It is demonstrated that surfactant concentration impacts oil spreading, self‐emulsification, and such behavior can aid in the emulsification of condensed oil drops. This work represents a critical step toward advancing the vapor condensation method's applications for emulsions and colloidal systems, with broad implications for various fields and the development of new emulsion‐based products and industrial processes.
Funder
Office of the Vice Chancellor for Research, University of Illinois at Chicago
Directorate for Engineering
Branco Weiss Fellowship – Society in Science