MnO2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons

Author:

Kaya Lokman1ORCID,Karatum Onuralp1ORCID,Balamur Rıdvan1ORCID,Kaleli Hümeyra Nur2ORCID,Önal Asım3ORCID,Vanalakar Sharadrao Anandrao4ORCID,Hasanreisoğlu Murat25ORCID,Nizamoglu Sedat13ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering Koc University 34450 Istanbul Turkey

2. Research Center for Translational Medicine Koc University 34450 Istanbul Turkey

3. Department of Biomedical Science and Engineering Koc University 34450 Istanbul Turkey

4. Department of Physics Karmaveer Hire College (Shivaji University) 416 209 Gargoti India

5. Department of Ophthalmology School of Medicine Koc University 34450 Istanbul Turkey

Abstract

AbstractOptoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three–dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode‐electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm−2) and photogenerated charge density (over 20 µC cm−2) under low light intensity (1 mW mm−2). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch‐clamp electrophysiology is recorded in the whole‐cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically‐deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.

Funder

European Commission

European Research Council

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3