Lattice Symmetry‐Guided Charge Transport in 2D Supramolecular Polymers Promotes Triplet Formation

Author:

Emmanuele Ruggero1,Sai Hiroaki2,Chen Jia‐Shiang123,Morrow Darien J.1,Đorđević Luka4,Gosztola David J.1,Hla Saw Wai15,Stupp Samuel I.2467,Ma Xuedan138ORCID

Affiliation:

1. Center for Nanoscale Materials Argonne National Laboratory Lemont IL 60439 USA

2. Simpson Querrey Institute for BioNanotechnology Northwestern University Chicago IL 60611 USA

3. Center for Molecular Quantum Transduction Northwestern University Evanston IL 60208 USA

4. Department of Chemistry Northwestern University Evanston IL 60208 USA

5. Nanoscale and Quantum Phenomena Institute and Department of Physics and Astronomy Ohio University Athens OH 45701 USA

6. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

7. Department of Medicine Northwestern University Chicago IL 60611 USA

8. Consortium for Advanced Science and Engineering University of Chicago Chicago IL 60637 USA

Abstract

AbstractSinglet‐to‐triplet intersystem crossing (ISC) in organic molecules is intimately connected with their geometries: by modifying the molecular shape, symmetry selection rules pertaining to spin‐orbit coupling can be partially relieved, leading to extra matrix elements for increased ISC. As an analog to this molecular design concept, the study finds that the lattice symmetry of supramolecular polymers also defines their triplet formation efficiencies. A supramolecular polymer self‐assembled from weakly interacting molecules is considered. Its 2D oblique unit cell effectively renders it as a coplanar array of 1D molecular columns weakly bound to each other. Using momentum‐resolved photoluminescence imaging in combination with Monte Carlo simulations, the study found that photogenerated charge carriers in the supramolecular polymer predominantly recombine as spin‐uncorrelated carrier pairs through inter‐column charge transfer states. This lattice‐defined recombination pathway leads to a substantial triplet formation efficiency (≈60%) in the supramolecular polymer. These findings suggest that lattice symmetry of micro‐/macroscopic structures relying on intermolecular interactions can be strategized for controlled triplet formation.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Energy Frontier Research Centers

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3