Three‐Phase‐Heterojunction Cu/Cu2O–Sb2O3 Catalyst Enables Efficient CO2 Electroreduction to CO and High‐Performance Aqueous Zn–CO2 Battery

Author:

Ma Junjie1,Huang Fang1,Xu Aihao1,Wei Dong1,Chen Xiangyu1,Zhao Wencan1,Chen Zhengjun1,Yin Xucai1,Zhu Jinliang2,He Huibing1ORCID,Xu Jing1

Affiliation:

1. School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials Guangxi University Nanning 530004 P. R. China

2. School of Resources, Environment, and Materials Collaborative Innovation Center of Sustainable Energy Materials Guangxi Key Laboratory of Processing for Non‐Ferrous Metals and Featured Materials Guangxi University Nanning 530004 P. R. China

Abstract

AbstractZn–CO2 batteries are excellent candidates for both electrical energy output and CO2 utilization, whereas the main challenge is to design electrocatalysts for electrocatalytic CO2 reduction reactions with high selectivity and low cost. Herein, the three‐phase heterojunction Cu‐based electrocatalyst (Cu/Cu2O‐Sb2O3‐15) is synthesized and evaluated for highly selective CO2 reduction to CO, which shows the highest faradaic efficiency of 96.3% at −1.3 V versus reversible hydrogen electrode, exceeding the previously reported best values for Cu‐based materials. In situ spectroscopy and theoretical analysis indicate that the Sb incorporation into the three‐phase heterojunction Cu/Cu2O‐Sb2O3‐15 nanomaterial promotes the formation of key *COOH intermediates compared with the normal Cu/Cu2O composites. Furthermore, the rechargeable aqueous Zn–CO2 battery assembled with Cu/Cu2O‐Sb2O3‐15 as the cathode harvests a peak power density of 3.01 mW cm−2 as well as outstanding cycling stability of 417 cycles. This research provides fresh perspectives for designing advanced cathodic electrocatalysts for rechargeable Zn–CO2 batteries with high‐efficient electricity output together with CO2 utilization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3