Wireless Magnetic Robot for Precise Hierarchical Control of Tissue Deformation

Author:

Wang Chao1,Zhao Zhi1,Han Joonsu2,Sharma Arvin Ardebili2,Wang Hua2,Zhang Xiaojia Shelly134ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Illinois Urbana‐Champaign Urbana IL 61801 USA

2. Department of Materials Science and Engineering University of Illinois Urbana‐Champaign Urbana IL 61801 USA

3. Department of Mechanical Science and Engineering University of Illinois Urbana‐Champaign Urbana IL 61801 USA

4. National Center for Supercomputing Applications University of Illinois Urbana‐Champaign Urbana IL 61801 USA

Abstract

AbstractMechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto‐active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue‐robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next‐generation mechanotherapy.

Funder

National Science Foundation

Defense Advanced Research Projects Agency

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3