Long‐Chain Acyl Carnitines Aggravate Polystyrene Nanoplastics‐Induced Atherosclerosis by Upregulating MARCO

Author:

Wang Bo1,Liang Boxuan2,Huang Yuji1,Li Zhiming1,Zhang Bingli1,Du Jiaxin1,Ye Rongyi1,Xian Hongyi1,Deng Yanhong1,Xiu Jiancheng3,Yang Xingfen1,Ichihara Sahoko4,Ichihara Gaku5,Zhong Yizhou1,Huang Zhenlie1ORCID

Affiliation:

1. NMPA Key Laboratory for Safety Evaluation of Cosmetics Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health Southern Medical University Guangzhou 510515 China

2. Affiliated Dongguan People's Hospital Southern Medical University Dongguan 523059 China

3. State Key Laboratory of Organ Failure Research Department of Cardiology Nanfang Hospital Southern Medical University Guangzhou 510515 China

4. Department of Environmental and Preventive Medicine School of Medicine Jichi Medical University Tochigi 329‐0498 Japan

5. Department of Occupational and Environmental Health Faculty of Pharmaceutical Sciences Tokyo University of Science Noda 278‐8510 Japan

Abstract

AbstractExposure to micro‐ and nanoplastics (MNPs) is common because of their omnipresence in environment. Recent studies have revealed that MNPs may cause atherosclerosis, but the underlying mechanism remains unclear. To address this bottleneck, ApoE−/− mice are exposed to 2.5–250 mg kg−1 polystyrene nanoplastics (PS‐NPs, 50 nm) by oral gavage with a high‐fat diet for 19 weeks. It is found that PS‐NPs in blood and aorta of mouse exacerbate the artery stiffness and promote atherosclerotic plaque formation. PS‐NPs activate phagocytosis of M1‐macrophage in the aorta, manifesting as upregulation of macrophage receptor with collagenous structure (MARCO). Moreover, PS‐NPs disrupt lipid metabolism and increase long‐chain acyl carnitines (LCACs). LCAC accumulation is attributed to the PS‐NP‐inhibited hepatic carnitine palmitoyltransferase 2. PS‐NPs, as well as LCACs alone, aggravate lipid accumulation via upregulating MARCO in the oxidized low‐density lipoprotein‐activated foam cells. Finally, synergistic effects of PS‐NPs and LCACs on increasing total cholesterol in foam cells are found. Overall, this study indicates that LCACs aggravate PS‐NP‐induced atherosclerosis by upregulating MARCO. This study offers new insight into the mechanisms underlying MNP‐induced cardiovascular toxicity, and highlights the combined effects of MNPs with endogenous metabolites on the cardiovascular system, which warrant further study.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3