Mechanism of Bile Acid in Regulating Platelet Function and Thrombotic Diseases

Author:

Zhou Xianghui1ORCID,Zhou Xin2,Zhang Zhao1,Zhu Ruirui3,Lu Meng4,Lv Keyu4,Fang Chao4,Ming Zhangyin4,Cheng Zhipeng1,Hu Yu1ORCID

Affiliation:

1. Department of Hematology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China

2. Department of Stomatology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China

3. Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China

4. Department of Pharmacology School of Basic Medicine Tongji Medical College of Huazhong University of Science and Technology Wuhan 430030 China

Abstract

AbstractPlatelets play a key role in physiological hemostasis and pathological thrombosis. Based on the limitations of current antiplatelet drugs, it's important to elucidate the mechanisms of regulating platelet activation. In addition to dissolving lipid nutrients, bile acids (BAs) can regulate platelet function. However, the specific mechanisms underlying BAs‐mediated effects on platelet activation and thrombotic diseases remain unknown. Therefore, the effects of BAs on platelets and intracellular regulatory mechanisms are explored. It is showed that the inhibitory effect of secondary BAs is more significant than that of primary BAs; lithocholic acid (LCA) shows the highest inhibitory effect. In the process of platelet activation, BAs suppress platelet activation via the spleen tyrosine kinase (SYK), protein kinase B (Akt), and extracellular signal‐regulated kinase1/2 (Erk1/2) pathways. Nck adaptor proteins (NCK1) deficiency significantly suppress the activity of platelets and arterial thrombosis. Phosphorylated proteomics reveal that LCA inhibited phosphorylation of syntaxin‐11 at S80/81 in platelets. Additional LCA supplementation attenuated atherosclerotic plaque development and reduced the inflammation in mice. In conclusion, BAs play key roles in platelet activation via Syk, Akt, ERK1/2, and syntaxin‐11 pathways, which are associated with NCK1. The anti‐platelet effects of BAs provide a theoretical basis for the prevention and therapy of thrombotic diseases.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3