Simultaneous Emerging Contaminant Removal and H2O2 Generation Through Electron Transfer Carrier Effect of Bi─O─Ce Bond Bridge Without External Energy Consumption

Author:

Sun Yingtao1,Cai Xuanying1,Lai Yufeng1,Hu Chun1,Lyu Lai12ORCID

Affiliation:

1. Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 China

2. Institute of Rural Revitalization Guangzhou University Guangzhou 510006 China

Abstract

AbstractConventional advanced oxidation processes (AOPs) require significant external energy consumption to eliminate emerging contaminants (ECs) with stable structures. Herein, a catalyst consisting of nanocube BiCeO particles (BCO‐NCs) prepared by an impregnation‐hydrothermal process is reported for the first time, which is used for removing ECs without light/electricity or any other external energy input in water and simultaneous in situ generation of H2O2. A series of characterizations and experiments reveal that dual reaction centers (DRC) which are similar to the valence band/conducting band structure are formed on the surface of BCO‐NCs. Under natural conditions without any external energy consumption, the BCO‐NCs self‐purification system can remove more than 80% of ECs within 30 min, and complete removal of ECs within 30 min in the presence of abundant electron acceptors, the corresponding second‐order kinetic constant is increased to 3.62 times. It is found that O2 can capture electrons from ECs through the Bi─O─Ce bond bridge during the reaction process, leading to the in situ production of H2O2. This work will be a key advance in reducing energy consumption for deep wastewater treatment and generating important chemical raw materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3