Outstanding CO2 Photoreduction in Single‐Atom Thulium Modified Carbon Nitride

Author:

Ding Cheng1,Yang Liuqing23ORCID,Lu Xinxin4,Chi Haoqiang1,Yang Yong5,Yuan Junyang1,Wang Xiaoyong1,Wu Xinglong1,Zhang Yongcai6,Zhou Yong178,Zou Zhigang17

Affiliation:

1. Key Laboratory of Modern Acoustics (MOE) Institute of Acoustics School of Physics National Laboratory of Solid‐State Microstructures College of Engineering and Applied Sciences Collaborative Innovation Center of Advanced Microstructures Eco‐Materials and Renewable Energy Research Center (ERERC) Jiangsu Key Laboratory for Nano Technology Nanjing University Nanjing Jiangsu 210093 P. R. China

2. College of Science Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China

3. Kunshan Sunlaite New Energy Co. Ltd. Kunshan Innovation Institute of Nanjing University No. 1666 South Zuchongzhi Road Kunshan Jiangsu 215347 P. R. China

4. PetroChina Shenzhen New Energy Research Institute Shenzhen Guangdong 518052 P. R. China

5. Key Laboratory of Soft Chemistry and Functional Materials (MOE) Nanjing University of Science and Technology Nanjing Jiangsu 210094 P. R. China

6. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225009 P. R. China

7. School of Science and Engineering The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China

8. School of Chemical and Environmental Engineering Anhui Polytechnic University Wuhu Anhui 241000 P. R. China

Abstract

AbstractCO2 reduction photocatalysts are favorable for obtaining renewable energy. Enriched active sites and effective photogenerated‐carriers separation are keys for improving CO2 photo‐reduction. A thulium (Tm) single atom tailoring strategy introducing carbon vacancies in porous tubular graphitic carbon nitride (g‐C3N4) surpassing the ever‐reported g‐C3N4 based photocatalysts, with 199.47 µmol g−1 h−1 CO yield, 96.8% CO selectivity, 0.84% apparent quantum efficiency and excellent photocatalytic stability, is implemented in this work. Results revealed that in‐plane Tm sites and interlayer‐bridged Tm‐N charge transfer channels significantly enhanced the aggregation/transfer of photogenerated electrons thus promoting CO2 adsorption/activation and contributing to *COOH intermediates formation. Meanwhile, Tm atoms and carbon vacancies both benefit for rich active sites and enhanced photogenerated‐charge separation, thus optimizing reaction pathway and leading to excellent CO2 photo‐reduction. This work not only provides guidelines for CO2 photo‐reduction catalysts design but also offers mechanistic insights into single‐atom based photocatalysts for solar fuel production.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3