Affiliation:
1. Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing 210009 China
Abstract
AbstractAcquired resistance represents a critical clinical challenge to molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) treatment in hepatocellular carcinoma (HCC). Therefore, it is urgent to explore new mechanisms and therapeutics that can overcome or delay resistance. Here, a US Food and Drug Administration (FDA)‐approved pleuromutilin antibiotic is identified that overcomes sorafenib resistance in HCC cell lines, cell line‐derived xenograft (CDX) and hydrodynamic injection mouse models. It is demonstrated that lefamulin targets interleukin enhancer‐binding factor 3 (ILF3) to increase the sorafenib susceptibility of HCC via impairing mitochondrial function. Mechanistically, lefamulin directly binds to the Alanine‐99 site of ILF3 protein and interferes with acetyltransferase general control non‐depressible 5 (GCN5) and CREB binding protein (CBP) mediated acetylation of Lysine‐100 site, which disrupts the ILF3‐mediated transcription of mitochondrial ribosomal protein L12 (MRPL12) and subsequent mitochondrial biogenesis. Clinical data further confirm that high ILF3 or MRPL12 expression is associated with poor survival and targeted therapy efficacy in HCC. Conclusively, this findings suggest that ILF3 is a potential therapeutic target for overcoming resistance to TKIs, and lefamulin may be a novel combination therapy strategy for HCC treatment with sorafenib and regorafenib.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Higher Education Discipline Innovation Project