Spontaneous Transition of Spherical Coacervate to Vesicle‐Like Compartment

Author:

Choi Hyunsuk1,Hong Yuri2ORCID,Najafi Saeed3,Kim Sun Young1,Shea Joan‐Emma3,Hwang Dong Soo2ORCID,Choi Yoo Seong1ORCID

Affiliation:

1. Department of Chemical Engineering and Applied Chemistry Chungnam National University Daejeon 34134 South Korea

2. Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea

3. Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA

Abstract

AbstractNumerous biological systems contain vesicle‐like biomolecular compartments without membranes, which contribute to diverse functions including gene regulation, stress response, signaling, and skin barrier formation. Coacervation, as a form of liquid–liquid phase separation (LLPS), is recognized as a representative precursor to the formation and assembly of membrane‐less vesicle‐like structures, although their formation mechanism remains unclear. In this study, a coacervation‐driven membrane‐less vesicle‐like structure is constructed using two proteins, GG1234 (an anionic intrinsically disordered protein) and bhBMP‐2 (a bioengineered human bone morphogenetic protein 2). GG1234 formed both simple coacervates by itself and complex coacervates with the relatively cationic bhBMP‐2 under acidic conditions. Upon addition of dissolved bhBMP‐2 to the simple coacervates of GG1234, a phase transition from spherical simple coacervates to vesicular condensates occurred via the interactions between GG1234 and bhBMP‐2 on the surface of the highly viscoelastic GG1234 simple coacervates. Furthermore, the shell structure in the outer region of the GG1234/bhBMP‐2 vesicular condensates exhibited gel‐like properties, leading to the formation of multiphasic vesicle‐like compartments. A potential mechanism is proposed for the formation of the membrane‐less GG1234/bhBMP‐2 vesicle‐like compartments. This study provides a dynamic process underlying the formation of biomolecular multiphasic condensates, thereby enhancing the understanding of these biomolecular structures.

Funder

National Research Foundation of Korea

Norges Idrettshøgskole

National Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3