Pyramid Textured Photonic Films with High‐Refractive Index Fillers for Efficient Radiative Cooling

Author:

Fu Yuting1,Chen Le2,Guo Yuao1,Shi Yuqing2,Liu Yanjun1,Zeng Yuqiang2,Lin Yuanjing2,Luo Dan134ORCID

Affiliation:

1. Department of Electrical & Electronic Engineering Southern University of Science and Technology Xueyuan Road 1088, Nanshan District Shenzhen 518055 China

2. School of Microelectronics Southern University of Science and Technology Shenzhen 518055 China

3. State Key Laboratory of Optical Fiber and Cable Manufacture Technology Southern University of Science and Technology Shenzhen 518055 China

4. Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices Southern University of Science and Technology Shenzhen 518055 China

Abstract

AbstractSub‐ambient cooling technologies relying on passive radiation have garnered escalating research attention owing to the challenges posed by global warming and substantial energy consumption inherent in active cooling systems. However, achieving highly efficient radiative cooling devices capable of effective heat dissipation remains a challenge. Herein, by synergic optimization of the micro‐pyramid surface structures and 2D hexagonal boron nitride nanoplates (h‐BNNs) scattering fillers, pyramid textured photonic films with remarkable solar reflectivity of 98.5% and a mid‐infrared (MIR) emittance of 97.2% are presented. The h‐BNNs scattering filler with high thermal conductivity contributed to the enhanced through‐plane thermal conductivity up to 0.496 W m−1 K−1 and the in‐plane thermal conductivity of 3.175 W m−1 K−1. The photonic films exhibit an optimized effective radiative cooling power of 201.2 W m−2 at 40 °C under a solar irradiance of 900 W m−2 and a daily sub‐ambient cooling effect up to 11 °C. Even with simultaneous internal heat generation by a 10 W ceramic heater and external solar irradiance of 500 W m−2, a sub‐ambient cooling of 5 °C can be realized. The synergic matching strategy of high thermal conductivity scattering fillers and microstructured photonic surfaces holds promise for scalable sub‐ambient radiative cooling technologies.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3