Interfacial Electronic Interactions Between Ultrathin NiFe‐MOF Nanosheets and Ir Nanoparticles Heterojunctions Leading to Efficient Overall Water Splitting

Author:

Li Cong12,Zhang Wei1,Cao Yongyong3,Ji Jun‐Yang1,Li Zhao‐Chen1,Han Xu1,Gu Hongwei1ORCID,Braunstein Pierre4ORCID,Lang Jian‐Ping12ORCID

Affiliation:

1. College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 P. R. China

2. State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China

3. College of Biological Chemical Science and Engineering Jiaxing University Jiaxing Zhejiang 314001 P. R. China

4. Université de Strasbourg – CNRS Institut de Chimie (UMR 7177 CNRS) 4 rue Blaise Pascal‐CS 90032 Strasbourg 67081 France

Abstract

AbstractCreating specific noble metal/metal‐organic framework (MOF) heterojunction nanostructures represents an effective strategy to promote water electrolysis but remains rather challenging. Herein, a heterojunction electrocatalyst is developed by growing Ir nanoparticles on ultrathin NiFe‐MOF nanosheets supported by nickel foam (NF) via a readily accessible solvothermal approach and subsequent redox strategy. Because of the electronic interactions between Ir nanoparticles and NiFe‐MOF nanosheets, the optimized Ir@NiFe‐MOF/NF catalyst exhibits exceptional bifunctional performance for the hydrogen evolution reaction (HER) (η10 = 15 mV, η denotes the overpotential) and oxygen evolution reaction (OER) (η10 = 213 mV) in 1.0 m KOH solution, superior to commercial and recently reported electrocatalysts. Density functional theory calculations are used to further investigate the electronic interactions between Ir nanoparticles and NiFe‐MOF nanosheets, shedding light on the mechanisms behind the enhanced HER and OER performance. This work details a promising approach for the design and development of efficient electrocatalysts for overall water splitting.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Suzhou Nano Science and Technology

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3