Clinical Applicability of Visible Light‐Mediated Cross‐linking for Structural Soft Tissue Reconstruction

Author:

Major Gretel1,Longoni Alessia1,Simcock Jeremy2,Magon Nicholas J3,Harte Jessica4,Bathish Boushra14,Kemp Roslyn5,Woodfield Tim1,Lim Khoon S16ORCID

Affiliation:

1. Department of Orthopaedic Surgery and Musculoskeletal Medicine Centre for Bioengineering & Nanomedicine University of Otago Christchurch 8011 New Zealand

2. Department of Surgery University of Otago Christchurch 8011 New Zealand

3. Centre for Free Radical Research Department of Pathology and Biomedical Science University of Otago Christchurch 8011 New Zealand

4. Jacqui Wood Cancer Centre Division of Cellular Medicine Ninewells Hospital and Medical School University of Dundee Dundee Scotland DD2 1GZ UK

5. Department of Microbiology and Immunology University of Otago Dunedin 9016 New Zealand

6. Light‐Activated Biomaterials Group School of Medical Sciences University of Sydney Sydney 2006 Australia

Abstract

AbstractVisible light‐mediated cross‐linking has utility for enhancing the structural capacity and shape fidelity of laboratory‐based polymers. With increased light penetration and cross‐linking speed, there is opportunity to extend future applications into clinical spheres. This study evaluated the utility of a ruthenium/sodium persulfate photocross‐linking system for increasing structural control in heterogeneous living tissues as an example, focusing on unmodified patient‐derived lipoaspirate for soft tissue reconstruction. Freshly‐isolated tissue is photocross‐linked, then the molar abundance of dityrosine bonds is measured using liquid chromatography tandem mass spectrometry and the resulting structural integrity assessed. The cell function and tissue survival of photocross‐linked grafts is evaluated ex vivo and in vivo, with tissue integration and vascularization assessed using histology and microcomputed tomography. The photocross‐linking strategy is tailorable, allowing progressive increases in the structural fidelity of lipoaspirate, as measured by a stepwise reduction in fiber diameter, increased graft porosity and reduced variation in graft resorption. There is an increase in dityrosine bond formation with increasing photoinitiator concentration, and tissue homeostasis is achieved ex vivo, with vascular cell infiltration and vessel formation in vivo. These data demonstrate the capability and applicability of photocrosslinking strategies for improving structural control in clinically‐relevant settings, potentially achieving more desirable patient outcomes using minimal manipulation in surgical procedures.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3