Affiliation:
1. Dept. of Neuroscience and Biomedical Engineering Aalto University Espoo Uusimaa 02150 Finland
2. Dept. of Applied Physics Aalto University Espoo Uusimaa 02150 Finland
Abstract
AbstractSuperhydrophobic surfaces (SHS) exhibit a pronounced ability to resist wetting. When immersed in water, water does not penetrate between the microstructures of the SHS. Instead, a thin layer of trapped gas remains, i.e., plastron. This fractional wetting is also known as the Cassie–Baxter state (CB). Impairment of superhydrophobicity occurs when water penetrates the plastron and, when complete wetting is achieved, a Wenzel state (W) results. Subsequent recovery back to CB state is one of the main challenges in the field of SHS wetting. Current methods for plastron recovery require complex mechanical or chemical integration, are time‐consuming or lack spatial control. Here an on‐demand, contact‐less approach for performing facile transitions between these wetting states at micrometer length scales is proposed. This is achieved by the use of acoustic radiation force (ARF) produced by high‐intensity focused ultrasound (HIFU). Switching from CB to W state takes <100 µs, while the local recovery back to CB state takes <45 s. To the best of authors knowledge, this is the first demonstration of ARF‐induced manipulation of the plastron enabling facile two‐way controlled switching of wetting states.