A Tellurium‐Boosted High‐Areal‐Capacity Zinc‐Sulfur Battery

Author:

Zhang Yue12,Amardeep Amardeep12,Wu Zhenrui12ORCID,Tao Li12,Xu Jia12,Freschi Donald J.3,Liu Jian12ORCID

Affiliation:

1. School of Engineering, Faculty of Applied Science University of British Columbia Kelowna BC V1V 1V7 Canada

2. Pacific Institute for Climate Solutions and School of Environmental Studies University of British Columbia Kelowna BC V1V 1V7 Canada

3. Fenix Advanced Materials 2950 Highway Drive Trail BC V1R 2T3 Canada

Abstract

AbstractAqueous rechargeable zinc‐sulfur (Zn‐S) batteries are a promising, cost‐effective, and high‐capacity energy storage technology. Still, they are challenged by the poor reversibility of S cathodes, sluggish redox kinetics, low S utilization, and unsatisfactory areal capacity. This work develops a facile strategy to achieve an appealing high‐areal‐capacity (above 5 mAh cm−2) Zn‐S battery by molecular‐level regulation between S and high‐electrical‐conductivity tellurium (Te). The incorporation of Te as a dopant allows for manipulation of the Zn‐S electrochemistry, resulting in accelerated redox conversion, and enhanced S utilization. Meanwhile, accompanied by the S‐ZnS conversion, Te is converted to zinc telluride during the discharge process, as revealed by ex‐situ characterizations. This additional redox reaction contributes to the S cathode's total excellent discharge capacity. With this unique cathode structure design, the carbon‐confined TeS cathode (denoted as Te1S7/C) delivers a high reversible capacity of 1335.0 mAh g−1 at 0.1 A g−1 with a mass loading of 4.22 mg cm−2, corresponding to a remarkable areal capacity of 5.64 mAh cm−2. Notably, a hybrid electrolyte design uplifts discharge plateau, reduces overpotential, suppresses Zn dendrites growth, and extends the calendar life of Zn‐Te1S7 batteries. This study provides a rational S cathode structure to realize high‐capacity Zn‐S batteries for practical applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

University of British Columbia

Pacific Institute for Climate Solutions

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3