Affiliation:
1. School of Engineering, Faculty of Applied Science University of British Columbia Kelowna BC V1V 1V7 Canada
2. Pacific Institute for Climate Solutions and School of Environmental Studies University of British Columbia Kelowna BC V1V 1V7 Canada
3. Fenix Advanced Materials 2950 Highway Drive Trail BC V1R 2T3 Canada
Abstract
AbstractAqueous rechargeable zinc‐sulfur (Zn‐S) batteries are a promising, cost‐effective, and high‐capacity energy storage technology. Still, they are challenged by the poor reversibility of S cathodes, sluggish redox kinetics, low S utilization, and unsatisfactory areal capacity. This work develops a facile strategy to achieve an appealing high‐areal‐capacity (above 5 mAh cm−2) Zn‐S battery by molecular‐level regulation between S and high‐electrical‐conductivity tellurium (Te). The incorporation of Te as a dopant allows for manipulation of the Zn‐S electrochemistry, resulting in accelerated redox conversion, and enhanced S utilization. Meanwhile, accompanied by the S‐ZnS conversion, Te is converted to zinc telluride during the discharge process, as revealed by ex‐situ characterizations. This additional redox reaction contributes to the S cathode's total excellent discharge capacity. With this unique cathode structure design, the carbon‐confined TeS cathode (denoted as Te1S7/C) delivers a high reversible capacity of 1335.0 mAh g−1 at 0.1 A g−1 with a mass loading of 4.22 mg cm−2, corresponding to a remarkable areal capacity of 5.64 mAh cm−2. Notably, a hybrid electrolyte design uplifts discharge plateau, reduces overpotential, suppresses Zn dendrites growth, and extends the calendar life of Zn‐Te1S7 batteries. This study provides a rational S cathode structure to realize high‐capacity Zn‐S batteries for practical applications.
Funder
Natural Sciences and Engineering Research Council of Canada
Canada Foundation for Innovation
University of British Columbia
Pacific Institute for Climate Solutions
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献