Superflexible Inorganic Ag2Te0.6S0.4 Fiber with High Thermoelectric Performance

Author:

Fu Yanqing123ORCID,Kang Shiliang123,Gu Hao123,Tan Linling123,Gao Chengwei123,Fang Zaijin4,Dai Shixun123,Lin Changgui123

Affiliation:

1. Laboratory of Infrared Materials and Devices The Research Institute of Advanced Technologies Ningbo University Ningbo 315211 P. R. China

2. Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province Ningbo 315211 P. R. China

3. Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province Ningbo 315211 P. R. China

4. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Institute of Photonics Technology Jinan University Guangzhou 511443 P. R. China

Abstract

AbstractFiber‐based inorganic thermoelectric (TE) devices, owing to the small size, light‐weight, flexibility, and high TE performance, are promising for applications in flexible thermoelectrics. Unfortunately, current inorganic TE fibers are strictly constrained by limited mechanical freedom because of the undesirable tensile strain, typically limited to a value of 1.5%, posing a strong obstacle for further application in large‐scale wearable systems. Here, a superflexible Ag2Te0.6S0.4 inorganic TE fiber is demonstrated that provides a record tensile strain of 21.2%, such that it enables various complex deformations. Importantly, the TE performance of the fiber shows high stability after ≈1000 cycles of bending and releasing processes with a small bending radius of 5 mm. This allows for the integration of the inorganic TE fiber into 3D wearable fabric, yielding a normalized power density of 0.4 µW m−1 K−2 under the temperature difference of 20 K, which is approaching the high‐performance Bi2Te3‐based inorganic TE fabric and is nearly two orders of magnitude higher than the organic TE fabrics. These results highlight that the inorganic TE fiber with both superior shape‐conformable ability and high TE performance may find potential applications in wearable electronics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3