2D Differential Metallic Immunopotentiators Drive High Diversity and Capability of Antigen‐specific Immunity Against Tumor

Author:

Ren Hongze12,Zhu Anqi3,Yang Wei4,Jia Yiwen1,Cheng Hui1,Wu Ye12,Tang Zhengqi1,Ye Weifan1,Sun Mayu5,Xie Yujie12,Yu Meihua1,Chen Yu12ORCID

Affiliation:

1. Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 China

2. School of medicine Shanghai University Shanghai 200444 China

3. Department of Medical Ultrasound Shanghai Tenth People's Hospital School of Medicine Tongji University Shanghai 200070 China

4. Department of Urology Xinhua Hospital School of Medicine Shanghai Jiaotong University Shanghai 200092 China

5. Laboratory Center Shanghai Municipal Hospital of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai 201203 China

Abstract

AbstractThe therapeutic efficacy of vaccines for treating cancers in clinics remains limited. Here, a rationally designed cancer vaccine by placing immunogenically differential and clinically approved aluminum (Al) or manganese (Mn) in a 2D nanosheet (NS) architecture together with antigens is reported. Structurally optimal NS with a high molar ratio of Mn to Al (MANS‐H) features distinctive immune modulation, markedly promoting the influx of heterogeneous innate immune cells at the injection site. Stimulation of multiple subsets of dendritic cells (DCs) significantly increases the levels, subtypes, and functionalities of antigen‐specific T cells. MANS‐H demonstrates even greater effectiveness in the production of antigen‐specific antibodies than the commercial adjuvant (Alhydrogel) by priming T helper (Th)2 cells rather than T follicular helper (Tfh) cells. Beyond humoral immunity, MANS‐H evokes high frequencies of antigen‐specific Th1 and CD8+ cell immunity, which are comparable with Quil‐A that is widely used in veterinary vaccines. Immunized mice with MANS‐H adjuvanted vaccines exert strong potency in tumor regression by promoting effector T cells infiltrating at tumor and overcoming tumor resistance in multiple highly aggressive tumor models. The engineered immunogen with an intriguing NS architecture and safe immunopotentiators offers the next clinical advance in cancer immunotherapy.

Funder

National Natural Science Foundation of China

Shanghai Education Development Foundation

Shanghai Municipal Education Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3