Affiliation:
1. Department of Biomedical Sciences Texas A&M University School of Dentistry Dallas TX 75246 USA
2. Chemical and Biomedical Engineering Department University of Missouri Columbia MO 65211 USA
3. Center of Excellence in Hip Scottish Rite for Children Dallas TX 75219 USA
4. Department of Orthopedic Surgery University of Texas Southwestern Medical Center Dallas TX 75390 USA
5. Department of Orthodontics Texas A&M University School of Dentistry Dallas TX 75246 USA
Abstract
AbstractDestructive periodontitis destroys alveolar bone and eventually leads to tooth loss. While guided bone regeneration, which is based on creating a physical barrier to hinder the infiltration of epithelial and connective tissues into defect sites, has been widely used for alveolar bone regeneration, its outcomes remain variable. In this work, a multifunctional nanofibrous hollow microsphere (NFHMS) is developed for enhanced alveolar bone regeneration. The NFHMS is first prepared via combining a double emulsification and a thermally induced phase separation process. Next, E7, a short peptide with high specific affinity to bone marrow‐derived stem cells (BMSCs), is conjugated onto the surface of NFHMS. After that, bone forming peptide (BFP), a short peptide derived from bone morphology protein 7 is loaded in calcium phosphate (CaP) nanoparticles, which are further encapsulated in the hollow space of the NFHMS‐E7 to form NFHMS‐E7‐CaP/BFP. The NFHMS‐E7‐CaP/BFP selectively promoted the adhesion of BMSCs and expelled the adhesion of fibroblasts and epithelial cells. In addition, the BFP is sustainedly released from the NFHMS‐E7‐CaP/BFP to enhance the osteogenesis of BMSCs. A rat challenging fenestration defect model showed that the NFHMS‐E7‐CaP/BFP significantly enhanced alveolar bone tissue regeneration. This work provides a novel bioengineering approach for guided bone regeneration.
Funder
National Institute of Dental and Craniofacial Research
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献