A Promising New Model: Establishment of Patient‐Derived Organoid Models Covering HPV‐Related Cervical Pre‐Cancerous Lesions and Their Cancers

Author:

Hu Bai12,Wang Renjie12,Wu Di12,Long Rui12,Fan Junpeng12,Hu Zhe12,Hu Xingyuan12,Ma Ding12,Li Fang3,Sun Chaoyang12,Liao Shujie12ORCID

Affiliation:

1. Department of Gynecology and Obstetrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China

2. National Clinical Research Center for Obstetrics and Gynecology Cancer Biology Research Center (Key Laboratory of the Ministry of Education) Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China

3. Department of Obstetrics and Gynecology Shanghai East Hospital School of Medicine Tongji University Shanghai 200120 China

Abstract

AbstractThe lack of human‐derived in vitro models that recapitulate cervical pre‐cancerous lesions has been the bottleneck in researching human papillomavirus (HPV) infection‐associated pre‐cancerous lesions and cancers for a long time. Here, a long‐term 3D organoid culture protocol for high‐grade squamous intraepithelial lesions and cervical squamous cell carcinoma that stably recapitulates the two tissues of origin is described. Originating from human‐derived samples, a small biobank of cervical pre‐tumoroids and tumoroids that faithfully retains genomic and transcriptomic characteristics as well as the causative HPV genome is established. Cervical pre‐tumoroids and tumoroids show differential responses to common chemotherapeutic agents and grow differently as xenografts in mice. By coculture organoid models with peripheral blood immune cells (PBMCs) stimulated by HPV antigenic peptides, it is illustrated that both organoid models respond differently to immunized PBMCs, supporting organoids as reliable and powerful tools for studying virus‐specific T‐cell responses and screening therapeutic HPV vaccines. In this study, a model of cervical pre‐cancerous lesions containing HPV is established for the first time, overcoming the bottleneck of the current model of human cervical pre‐cancerous lesions. This study establishes an experimental platform and biobanks for in vitro mechanistic research, therapeutic vaccine screening, and personalized treatment for HPV‐related cervical diseases.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3