In Situ Quantitative Monitoring of Adsorption from Aqueous Phase by UV–vis Spectroscopy: Implication for Understanding of Heterogeneous Processes

Author:

Yang Xu‐Dan1,Gong Bo1,Chen Wei2ORCID,Chen Jie‐Jie1,Qian Chen1,Lu Rui3,Min Yuan1,Jiang Ting1,Li Liang1,Yu Han‐Qing1ORCID

Affiliation:

1. CAS Key Laboratory of Urban Pollutant Conversion Department of Environmental Science and Engineering University of Science and Technology of China Hefei 230026 China

2. School of Metallurgy and Environment Central South University Changsha 410083 China

3. School of Environmental and Biological Engineering Nanjing University of Science and Technology Nanjing 210094 China

Abstract

AbstractThe development of in situ techniques to quantitatively characterize the heterogeneous reactions is essential for understanding physicochemical processes in aqueous phase. In this work, a new approach coupling in situ UV–vis spectroscopy with a two‐step algorithm strategy is developed to quantitatively monitor heterogeneous reactions in a compact closed‐loop incorporation. The algorithm involves the inverse adding‐doubling method for light scattering correction and the multivariate curve resolution‐alternating least squares (MCR‐ALS) method for spectral deconvolution. Innovatively, theoretical spectral simulations are employed to connect MCR‐ALS solutions with chemical molecular structural evolution without prior information for reference spectra. As a model case study, the aqueous adsorption kinetics of bisphenol A onto polyamide microparticles are successfully quantified in a one‐step UV–vis spectroscopic measurement. The practical applicability of this approach is confirmed by rapidly screening a superior adsorbent from commercial materials for antibiotic wastewater adsorption treatment. The demonstrated capabilities are expected to extend beyond monitoring adsorption systems to other heterogeneous reactions, significantly advancing UV–vis spectroscopic techniques toward practical integration into automated experimental platforms for probing aqueous chemical processes and beyond.

Funder

Program for Changjiang Scholars and Innovative Research Team in University

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3