Towards Long‐Term Stable Perovskite Solar Cells: Degradation Mechanisms and Stabilization Techniques

Author:

Ahn Namyoung1,Choi Mansoo23ORCID

Affiliation:

1. Chemistry Division Los Alamos National Laboratory Los Alamos NM 87544 USA

2. Global Frontier Center for Multiscale Energy Systems Seoul National University Seoul 08826 Republic of Korea

3. Department of Mechanical Engineering Seoul National University Seoul 08826 Republic of Korea

Abstract

AbstractIt is certain that perovskite materials must be a game‐changer in the solar industry as long as their stability reaches a level comparable with the lifetime of a commercialized Si photovoltaic. However, the operational stability of perovskite solar cells and modules still remains unresolved, especially when devices operate in practical energy‐harvesting modes represented by maximum power point tracking under 1 sun illumination at ambient conditions. This review article covers from fundamental aspects of perovskite instability including chemical decomposition pathways under light soaking and electrical bias, to recent advances and techniques that effectively prevent such degradation of perovskite solar cells and modules. In particular, fundamental causes for permanent degradation due to ion migration and trapped charges are overviewed and explain their interplay between ions and charges. Based on the degradation mechanism, recent advances on the strategies are discussed to slow down the degradation during operation for a practical use of perovskite‐based solar devices.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Korea Evaluation Institute of Industrial Technology

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3