Hypoxic Preconditional Engineering Small Extracellular Vesicles Promoted Intervertebral Disc Regeneration by Activating Mir‐7‐5p/NF‐Κb/Cxcl2 Axis

Author:

Hu Hongxing1,Wang Zhaojie12,Yang Huiyi1,Bai Yuxin1,Zhu Rongrong12,Cheng Liming13ORCID

Affiliation:

1. Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration Ministry of Education Department of Orthopedics Tongji Hospital Affiliated to Tongji University School of Medicine Tongji University Shanghai 200092 China

2. Frontier Science Center for Stem Cell Research School of Life Science and Technology Tongji University Shanghai 200092 China

3. Clinical Center for Brain and Spinal Cord Research Tongji University Shanghai 200092 China

Abstract

AbstractChronic low back pain (LBP) caused by intervertebral disc (IVD) degradation is a serious socioeconomic burden that can cause severe disabilities. Addressing the underlying pathogenic mechanisms of IVD degeneration may inspire novel therapeutic strategy for LBP. Herein, hypoxic preconditioning improves both the biological function of MSCs in hostile microenvironments and enhances the production of small extracellular vesicles (sEVs) with desirable therapeutic functions. In vitro results reveal that hypoxic preconditional engineering sEVs (HP‐sEVs) alleviate the inflammatory microenvironments of IVD degradation, enhance the proliferation of nucleus pulposus (NP) cells, and promote proteoglycan synthesis and collagen formation. Transcriptomic sequencing reveales the excellent therapeutic effects of HP‐sEVs in promoting extracellular matrix regeneration through the delivery of microRNA(miR)‐7‐5p, which further suppresses p65 production and thus the inhibition of Cxcl2 production. Moreover, in vivo results further confirm the robust therapeutic role of HP‐sEVs in promoting IVD regeneration through the same mechanism mediated by miR‐7‐5p delivery. In conclusion, this study provides a novel therapeutic strategy for treating IVD degradation and is thus valuable for understanding the mechanism‐of‐action of HP‐sEVs in IVD regeneration associated with chronic lower back pain.

Funder

National Key Clinical Specialty Discipline Construction Program of China

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3