A Bioinspired Manganese‐Organic Framework Ameliorates Ischemic Stroke through its Intrinsic Nanozyme Activity and Upregulating Endogenous Antioxidant Enzymes

Author:

Wang Jian12,Wang Yang12,Xiaohalati Xiakeerzhati2,Su Qiangfei12,Liu Jingwei2,Cai Bo2,Yang Wen2,Wang Zheng23ORCID,Wang Lin12

Affiliation:

1. Department of Clinical Laboratory Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 P. R. China

2. Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational Research Research Center for Tissue Engineering and Regenerative Medicine Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 P. R. China

3. Department of Gastrointestinal Surgery Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 P. R. China

Abstract

AbstractFollowing stroke, oxidative stress induced by reactive oxygen species (ROS) aggravates neuronal damage and enlarges ischemic penumbra, which is devastating to stroke patients. Nanozyme‐based antioxidants are emerging to treat stroke through scavenging excessive ROS. However, most of nanozymes cannot efficiently scavenge ROS in neuronal cytosol and mitochondria, due to low‐uptake abilities of neurons and barriers of organelle membranes, significantly limiting nanozymes’ neuroprotective effects. To overcome this limitation, a manganese‐organic framework modified with polydopamine (pDA‐MNOF), capable of not only mimicking catalytic activities of natural SOD2's catalytic domain but also upregulating two endogenous antioxidant enzymes in neurons is fabricated. With such a dual anti‐ROS effect, this nanozyme robustly decreases cellular ROS and effectively protects them from ROS‐induced injury. STAT‐3 signaling is found to play a vital role in pDA‐MNOF activating the two antioxidant enzymes, HO1 and SOD2. In vivo pDA‐MNOF treatment significantly improves the survival of middle cerebral artery occlusion (MCAo) mice by reducing infarct volume and more importantly, promotes animal behavioral recovery. Further, pDA‐MNOF activates vascular endothelial growth factor expression, a downstream target of STAT3 signaling, thus enhancing angiogenesis. Taken together, the biochemical, cell‐biological, and animal‐level behavioral data demonstrate the potentiality of pDA‐MNOF as a dual ROS‐scavenging agent for stroke treatment.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Hubei Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3