Fibronectin Connecting Cell Sheet Based on Click Chemistry for Wound Repair

Author:

Xu Wei1,He Meng1,Lu Qinghua1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules the State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China

Abstract

AbstractAs a living repair material, cell sheet exhibits significant potential in wound repair. Nonetheless, wound healing is a complicated and protracted process that necessitates specific repair functions at each stage, including hemostasis and antibacterial activity. In this work, on the basis of harvesting the cell sheet via a photothermal response strategy, a fibronectin attached cell sheet (FACS) is prepared to enhance its wound repair capability. For this purpose, the azide group (N3) is initially tagged onto the cell surface through metabolic glycoengineering of unnatural sugars, and then the conjugate (DBCO‐fibronectin) comprises of the dibenzocyclooctyne (DBCO) and fibronectin with multiple wound repair functions is linked to N3 using click chemistry. Biological evaluations following this demonstrates that the FACS preparation exhibits excellent biocompatibility, and the fibronectin modification enhances the capacity for cell proliferation and migration. Moreover, in vivo wound healing experiment confirms the reparative efficacy of FACS. It not only has a wound closure rate 1.46 times that of a conventional cell sheet but also reduces inflammatory cell infiltration, promotes hair follicle and blood vessel regeneration, and encourages collagen deposition. This strategy holds enormous clinical potential and paves the way for advanced functional modifications of cell sheets.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current progress of protein-based dressing for wound healing applications – A review;Journal of Biomaterials Science, Polymer Edition;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3