MXene‐Stabilized VS2 Nanostructures for High‐Performance Aqueous Zinc Ion Storage

Author:

Zhang Liping1,Li Yeying1,Liu Xianjie2,Yang Ruping1,Qiu Junxiao1,Xu Jingkun1,Lu Baoyang1,Rosen Johanna3,Qin Leiqiang3ORCID,Jiang Jianxia13

Affiliation:

1. Flexible Electronics Innovation Institute (FEII) Jiangxi Key Laboratory of Flexible Electronics Jiangxi Science and Technology Normal University Nanchang 330013 China

2. Laboratory of Organic Electronics (LOE) Department of Science and Technology Linköping University Norrköping 60174 Sweden

3. Department of Physics, Chemistry and Biology (IFM) Linköping University Linköping 58183 Sweden

Abstract

AbstractAqueous zinc‐ion batteries (AZIBs) based on vanadium oxides or sulfides are promising candidates for large‐scale rechargeable energy storage due to their ease of fabrication, low cost, and high safety. However, the commercial application of vanadium‐based electrode materials has been hindered by challenging problems such as poor cyclability and low‐rate performance. To this regard, sophisticated nanostructure engineering technology is used to adeptly incorporate VS2 nanosheets into the MXene interlayers to create a stable 2D heterogeneous layered structure. The MXene nanosheets exhibit stable interactions with VS2 nanosheets, while intercalation between nanosheets effectively increases the interlayer spacing, further enhancing their stability in AZIBs. Benefiting from the heterogeneous layered structure with high conductivity, excellent electron/ion transport, and abundant reactive sites, the free‐standing VS2/Ti3C2Tz composite film can be used as both the cathode and the anode of AZIBs. Specifically, the VS2/Ti3C2Tz cathode presents a high specific capacity of 285 mAh g−1 at 0.2 A g−1. Furthermore, the flexible Zn‐metal free in‐plane VS2/Ti3C2Tz//MnO2/CNT AZIBs deliver high operation voltage (2.0 V) and impressive long‐term cycling stability (with a capacity retention of 97% after 5000 cycles) which outperforms almost all reported Vanadium‐based electrodes for AZIBs. The effective modulation of the material structure through nanocomposite engineering effectively enhances the stability of VS2, which shows great potential in Zn2+ storage. This work will hasten and stimulate further development of such composite material in the direction of energy storage.

Funder

National Natural Science Foundation of China

Energimyndigheten

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3