Affiliation:
1. School of Materials Science and Engineering Zhengzhou University Henan 450001 P. R. China
Abstract
AbstractSmart windows with light management and indoor solar heating modulation capacities are of paramount importance for building energy conservation. Thermochromic poly(N‐isopropylacrylamide) (PNIPAm) hydrogel smart windows exhibit advantages of the relatively suitable transition temperature of 32 °C, high cost‐effective and automatic passive sunlight regulation, but sustain slow response rate and unsatisfactory solar modulation efficiency. Herein, a strategy of one‐step copolymerization of NIPAm and different olefine acids (OA) using reverse atom transfer radical polymerization method is developed to fabricate various chain/microparticle hybrids (CMH) for liquid energy‐saving windows. Synergetic mechanisms of thermal‐induced dissolution and aggregation of linear polymer chains integrated with water capture and release of microgel particles contribute to tunable light‐scattering behaviors and adaptive solar modulation. Without any post‐treatment, the as‐prepared poly(N‐isopropylacrylamide‐co‐acrylic acid) (P(NIPAm‐co‐AA))‐based CMH suspension is injected into sandwich glass to construct energy‐saving windows, which exhibits appreciated near‐room‐temperature transition (26.7 °C), rapid response (5 s), extraordinary luminous transmittance (91.5%), and solar modulation efficiency (85.8%), resulting in a substantial decline of indoor temperature of 24.5 °C in simulation experiment. Combining the versatile strategy with flexible adjustment on transition temperature, multifarious P(NIPAm‐co‐OA)‐based CMH windows with eminent light management capacity are obtained. This work will powerfully promote the development and renovation of energy‐efficient windows.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献