Kirigami‐Structured, Low‐Impedance, and Skin‐Conformal Electronics for Long‐Term Biopotential Monitoring and Human–Machine Interfaces

Author:

Xia Meili1,Liu Jianwen2,Kim Beom Jin3,Gao Yongju4,Zhou Yunlong1,Zhang Yongjing1,Cao Duxia1,Zhao Songfang1,Li Yang25,Ahn Jong‐Hyun3ORCID

Affiliation:

1. School of Materials Science and Engineering University of Jinan Jinan 250022 China

2. School of Information Science and Engineering University of Jinan Jinan 250022 China

3. School of Electrical and Electronic Engineering Yonsei University Seoul 03722 Republic of Korea

4. Shandong Zhongke Advanced Technology Co., Ltd Jinan 250000 China

5. School of Microelectronics Shandong University Jinan 250101 China

Abstract

AbstractEpidermal dry electrodes with high skin‐compliant stretchability, low bioelectric interfacial impedance, and long‐term reliability are crucial for biopotential signal recording and human–machine interaction. However, incorporating these essential characteristics into dry electrodes remains a challenge. Here, a skin‐conformal dry electrode is developed by encapsulating kirigami‐structured poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/polyvinyl alcohol (PVA)/silver nanowires (Ag NWs) film with ultrathin polyurethane (PU) tape. This Kirigami‐structured PEDOT:PSS/PVA/Ag NWs/PU epidermal electrode exhibits a low sheet resistance (≈3.9 Ω sq−1), large skin‐compliant stretchability (>100%), low interfacial impedance (≈27.41 kΩ at 100 Hz and ≈59.76 kΩ at 10 Hz), and sufficient mechanoelectrical stability. This enhanced performance is attributed to the synergistic effects of ionic/electronic current from PEDOT:PSS/Ag NWs dual conductive network, Kirigami structure, and unique encapsulation. Compared with the existing dry electrodes or standard gel electrodes, the as‐prepared electrodes possess lower interfacial impedance and noise in various conditions (e.g., sweat, wet, and movement), indicating superior water/motion‐interference resistance. Moreover, they can acquire high‐quality biopotential signals even after water rinsing and ultrasonic cleaning. These outstanding advantages enable the Kirigami‐structured PEDOT:PSS/PVA/Ag NWs/PU electrodes to effectively monitor human motions in real‐time and record epidermal biopotential signals, such as electrocardiogram, electromyogram, and electrooculogram under various conditions, and control external electronics, thereby facilitating human–machine interactions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National Research Foundation of Korea

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3