Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes

Author:

García‐Arribas Aritz B.1,Ibáñez‐Freire Pablo2,Carlero Diego3,Palacios‐Alonso Pablo2,Cantero‐Reviejo Miguel2,Ares Pablo2,López‐Polín Guillermo1,Yan Han4,Wang Yan4,Sarkar Soumya4,Chhowalla Manish4,Oksanen Hanna M.5,Martín‐Benito Jaime1,de Pablo Pedro J.16,Delgado‐Buscalioni Rafael26ORCID

Affiliation:

1. Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid Madrid 28049 Spain

2. Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Madrid 28049 Spain

3. Departamento de Estructura de Macromoléculas Centro Nacional de Biotecnología CSIC Madrid 28049 Spain

4. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS UK

5. Faculty of Biological and Environmental Sciences Vijkki Biocenter University of Helsinki Helsinki 00014 Finland

6. Instituto de Física de la Materia Condensada IFIMAC Universidad Autónoma de Madrid Madrid 28049 Spain

Abstract

AbstractCoronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus‐surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption‐free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse‐grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane‐surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption‐free energies.

Funder

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

Ministerio de Ciencia e Innovación

Comunidad de Madrid

Human Frontier Science Program

Fundación Banco Santander

Fundación General CSIC

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3