Exfoliated 2D Nanosheet‐Based Conjugated Polymer Composites with P‐N Heterojunction Interfaces for Highly Efficient Electrocatalytic Hydrogen Evolution

Author:

Tsai Cheng‐Yu1,Li Hsu‐Sheng1,Kuchayita Kumasser Kusse1,Huang Hsin‐Chih2,Su Wei‐Nien1,Cheng Chih‐Chia13ORCID

Affiliation:

1. Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei 10607 Taiwan

2. Department of Materials Science and Engineering National Formosa University Yunlin 63201 Taiwan

3. Advanced Membrane Materials Research Center National Taiwan University of Science and Technology Taipei 10607 Taiwan

Abstract

AbstractWe have achieved a significant breakthrough in the preparation and development of two‐dimensional nanocomposites with P‐N heterojunction interfaces as efficient cathode catalysts for electrochemical hydrogen evolution reaction (HER) and iodide oxidation reaction (IOR). P‐type acid‐doped polyaniline (PANI) and N‐type exfoliated molybdenum disulfide (MoS2) nanosheets can form structurally stable composites due to formation of P‐N heterojunction structures at their interfaces. These P‐N heterojunctions facilitate charge transfer from PANI to MoS2 structures and thus significantly enhance the catalytic efficiency of MoS2 in the HER and IOR. Herein, by combining efficient sodium‐functionalized chitosan‐assisted MoS2 exfoliation, electropolymerization of PANI on nickel foam (NF) substrate, and electrochemical activation, controllable and scalable Na‐Chitosan/MoS2/PANI/NF electrodes are successfully constructed as non‐noble metal‐based electrochemical catalysts. Compared to a commercial platinum/carbon (Pt/C) catalyst, the Na‐Chitosan/MoS2/PANI/NF electrode exhibits significantly lower resistance and overpotential, a similar Tafel slope, and excellent catalytic stability at high current densities, demonstrating excellent catalytic performance in the HER under acidic conditions. More importantly, results obtained from proton exchange membrane fuel cell devices confirm the Na‐Chitosan/MoS2/PANI/NF electrode exhibits a low turn‐on voltage, high current density, and stable operation at 2 V. Thus, this system holds potential as a replacement for Pt/C with feasibility for applications in energy‐related fields.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3