Affiliation:
1. Institute of AI and Robotics, State Key Laboratory of Medical Neurobiology MOE Engineering Research Center of AI & Robotics Fudan University Shanghai 200433 China
2. Department of Mechanical Engineering University of Michigan Ann Arbor MI 48109 USA
Abstract
AbstractRecent advances in multistable metamaterials reveal a link between structural configuration transition and Boolean logic, heralding a new generation of computationally capable intelligent materials. To enable higher‐level computation, existing computational frameworks require the integration of large‐scale networked logic gates, which places demanding requirements on the fabrication of materials counterparts and the propagation of signals. Inspired by cellular automata, a novel computational framework based on multistable origami metamaterials by incorporating reservoir computing is proposed, which can accomplish high‐level computation tasks without the need to construct a logic gate network. This approach thus eliminates the demanding requirements for the fabrication of materials and signal propagation when constructing large‐scale networks for high‐level computation in conventional mechanical logic. Using the multistable stacked Miura‐origami metamaterial as a validation platform, digit recognition is experimentally implemented by a single actuator. Moreover, complex tasks, such as handwriting recognition and 5‐bit memory tasks, are also shown to be feasible with the new computation framework. The research represents a significant advancement in developing a new generation of intelligent materials with advanced computational capabilities. With continued research and development, these materials can have a transformative impact on a wide range of fields, from computational science to material mechano‐intelligence technology and beyond.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献