Screen‐Printing Technology for Scale Manufacturing of Perovskite Solar Cells

Author:

Chen Changshun12,Ran Chenxin1,Yao Qing2,Wang Jinpei2,Guo Chunyu2,Gu Lei1,Han Huchen2,Wang Xiaobo1,Chao Lingfeng2,Xia Yingdong2,Chen Yonghua2ORCID

Affiliation:

1. Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) Northwestern Polytechnical University Xi'an 710072 P. R. China

2. Key Laboratory of Flexible Electronics (KLOFE) and Institution of Advanced Materials (IAM) School of Flexible Electronics (Future Technologies) Nanjing Tech University (NanjingTech) Nanjing Jiangsu 211816 P. R. China

Abstract

AbstractAs a key contender in the field of photovoltaics, third‐generation thin‐film perovskite solar cells (PSCs) have gained significant research and investment interest due to their superior power conversion efficiency (PCE) and great potential for large‐scale production. For commercialization consideration, low‐cost and scalable fabrication is of primary importance for PSCs, and the development of the applicable film‐forming techniques that meet the above requirements plays a key role. Currently, large‐area perovskite films are mainly produced by printing techniques, such as slot‐die coating, inkjet printing, blade coating, and screen‐printing. Among these techniques, screen printing offers a high degree of functional layer compatibility, pattern design flexibility, and large‐scale ability, showing great promise. In this work, the advanced progress on applying screen‐printing technology in fabricating PSCs from technique fundamentals to practical applications is presented. The fundamentals of screen‐printing technique are introduced and the state‐of‐the‐art studies on screen‐printing different functional layers in PSCs and the control strategies to realize fully screen‐printed PSCs are summarized. Moreover, the current challenges and opportunities faced by screen‐printed perovskite devices are discussed. This work highlights the critical significance of high throughput screen‐printing technology in accelerating the commercialization course of PSCs products.

Funder

National Natural Science Foundation of China

Northwestern Polytechnical University

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3