Multispectral Optoacoustic Tomography Enables In Vivo Anatomical and Functional Assessment of Human Tendons

Author:

Ivankovic Ivana12ORCID,Lin Hsiao‐Chun Amy3ORCID,Özbek Ali12ORCID,Orive Ana12,Deán‐Ben Xosé Luís12ORCID,Razansky Daniel12ORCID

Affiliation:

1. Faculty of Medicine Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology University of Zurich Winterthurerstrasse 190 Zurich CH‐8057 Switzerland

2. Department of Information Technology and Electrical Engineering Institute for Biomedical Engineering ETH Zurich, Wolfgang‐Pauli‐Str. 27 Zurich CH‐8093 Switzerland

3. Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University No.101, Sec.2, Kuang‐Fu Rd Hsinchu 300044 Taiwan

Abstract

AbstractTendon injuries resulting from accidents and aging are increasing globally. However, key tendon functional parameters such as microvascularity and oxygen perfusion remain inaccessible via the currently available clinical diagnostic tools, resulting in disagreements on optimal treatment options. Here, a new noninvasive method for anatomical and functional characterization of human tendons based on multispectral optoacoustic tomography (MSOT) is reported. Healthy subjects are investigated using a hand‐held scanner delivering real‐time volumetric images. Tendons in the wrist, ankle, and lower leg are imaged in the near‐infrared optical spectrum to utilize endogenous contrast from Type I collagen. Morphology of the flexor carpi ulnaris, carpi radialis, palmaris longus, and Achilles tendons are reconstructed in full. The functional roles of the flexor digitorium longus, hallicus longus, and the tibialis posterior tendons have been visualized by dynamic tracking during toe extension‐flexion motion. Furthermore, major vessels and microvasculature near the Achilles tendon are localized, and the global increase in oxygen saturation in response to targeted exercise is confirmed by perfusion studies. MSOT is shown to be a versatile tool capable of anatomical and functional tendon assessments. Future studies including abnormal subjects can validate the method as a viable noninvasive clinical tool for tendinopathy management and healing monitoring.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3