Nano Si‐Doped Ruthenium Oxide Particles from Caged Precursors for High‐Performance Acidic Oxygen Evolution

Author:

Liu Chunxiang1ORCID,Jiang Yunbo2,Wang Teng13ORCID,Li Qiaosheng1,Liu Yuzhou134ORCID

Affiliation:

1. School of Chemistry Beihang University Beijing 100191 P. R. China

2. State Key Laboratory for Advanced Technologies for Comprehensive Utilization of Platinum Metals Sino‐Platinum Metals Co. Ltd. 650221 Kunming P. R. China

3. Beijing Advanced Innovation Center for Biomedical Engineering School of Chemistry Beihang University Beijing 100191 P. R. China

4. Research Department Shenyunzhihe Company Qidian Center, FL 10, Energy East Rd, #1, Changping District Beijing 102206 P. R. China

Abstract

AbstractRuO2 is well known as the benchmark acidic oxygen evolution reaction (OER) catalyst, but its practical application has been impeded by its limited durability. Herein, it is presented that the stability of ruthenium oxide can be significantly improved by pretrapping RuCl3 precursors within a cage compound possessing 72 aromatic rings, which leads to well carbon‐coated RuOx particles (Si‐RuOx@C) after calcination. The catalyst survives in 0.5 M H2SO4 for an unprecedented period of 100 hours at 10 mA cm−2 with minimal overpotential change during OER. In contrast, RuOx prepared from similar non‐tied compounds doesn't exhibit such catalytic activity, highlighting the importance of the preorganization of Ru precursors within the cage prior to calcination. In addition, the overpotential at 10 mA cm−2 in acid solution is only 220 mV, much less than that of commercial RuO2. X‐ray absorption fine structure (FT‐EXAFS) reveals the Si doping through unusual Ru–Si bond, and density functional theory (DFT) calculation reveals the importance of the Ru‐Si bond in enhancing both the activity and stability of the catalyst.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3