Targeting GRP75 with a Chlorpromazine Derivative Inhibits Endometrial Cancer Progression Through GRP75–IP3R‐Ca2+‐AMPK Axis

Author:

Wang Qi12ORCID,Li Lijuan1,Gao Xiaoyan1,Zhang Chunxue1,Xu Chen1,Song Lingyi2,Li Jian2,Sun Xiao1,Mao Fei2,Wang Yudong1ORCID

Affiliation:

1. Department of Gynecologic Oncology the International Peace Maternity and Child Health Hospital School of Medicine Shanghai Municipal Key Clinical Specialty Female Tumor Reproductive Specialty Shanghai Key Laboratory of Embryo Original Disease Shanghai Jiao Tong University Shanghai 200025 China

2. State Key Laboratory of Bioreactor Engineering Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 China

Abstract

AbstractTumors often overexpress glucose‐regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose‐regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity‐based protein profiling and loss‐of‐function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75‐deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria‐associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum–mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP‐activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.

Funder

Program of Shanghai Academic Research Leader

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3