Affiliation:
1. Frontiers Science Center for Flexible Electronics and Shaanxi Institute of Flexible Electronics Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
2. Fujian Cross Strait Institute of Flexible Electronics (Future Technologies) Fujian Normal University Fuzhou 350117 China
Abstract
Abstract3D Cu current collectors have been demonstrated to improve the cycling stability of Li metal anodes, however, the role of their interfacial structure for Li deposition pattern has not been investigated thoroughly. Herein, a series of 3D integrated gradient Cu‐based current collectors are fabricated by the electrochemical growth of CuO nanowire arrays on Cu foil (CuO@Cu), where their interfacial structures can be readily controlled by modulating the dispersities of the nanowire arrays. It is found that the interfacial structures constructed by sparse and dense dispersion of CuO nanowire arrays are both disadvantageous for the nucleation and deposition of Li metal, consequently fast dendrite growth. In contrast, a uniform and appropriate dispersity of CuO nanowire arrays enables stable bottom Li nucleation associated with smooth lateral deposition, affording the ideal bottom‐up Li growth pattern. The optimized CuO@Cu‐Li electrodes exhibit a highly reversible Li cycling including a coulombic efficiency of up to ≈99% after 150 cycles and a long‐term lifespan of over 1200 h. When coupling with LiFePO4 cathode, the coin and pouch full‐cells deliver outstanding cycling stability and rate capability. This work provides a new insight to design the gradient Cu current collectors toward high‐performance Li metal anodes.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Ningbo
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献