Integrated Gradient Cu Current Collector Enables Bottom‐Up Li Growth for Li Metal Anodes: Role of Interfacial Structure

Author:

Liu Yuhang1,Li Yifan1,Du Zhuzhu1,He Chen1,Bi Jingxuan1,Li Siyu1,Guan Wanqing1,Du Hongfang2,Ai Wei1ORCID

Affiliation:

1. Frontiers Science Center for Flexible Electronics and Shaanxi Institute of Flexible Electronics Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China

2. Fujian Cross Strait Institute of Flexible Electronics (Future Technologies) Fujian Normal University Fuzhou 350117 China

Abstract

Abstract3D Cu current collectors have been demonstrated to improve the cycling stability of Li metal anodes, however, the role of their interfacial structure for Li deposition pattern has not been investigated thoroughly. Herein, a series of 3D integrated gradient Cu‐based current collectors are fabricated by the electrochemical growth of CuO nanowire arrays on Cu foil (CuO@Cu), where their interfacial structures can be readily controlled by modulating the dispersities of the nanowire arrays. It is found that the interfacial structures constructed by sparse and dense dispersion of CuO nanowire arrays are both disadvantageous for the nucleation and deposition of Li metal, consequently fast dendrite growth. In contrast, a uniform and appropriate dispersity of CuO nanowire arrays enables stable bottom Li nucleation associated with smooth lateral deposition, affording the ideal bottom‐up Li growth pattern. The optimized CuO@Cu‐Li electrodes exhibit a highly reversible Li cycling including a coulombic efficiency of up to ≈99% after 150 cycles and a long‐term lifespan of over 1200 h. When coupling with LiFePO4 cathode, the coin and pouch full‐cells deliver outstanding cycling stability and rate capability. This work provides a new insight to design the gradient Cu current collectors toward high‐performance Li metal anodes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Ningbo

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3