Spatial Confinement of Pt Nanoparticles in Carbon Nanotubes for Efficient and Selective H2 Evolution from Methanol

Author:

Jin Xiaotao1,Yan Jiaying1,Liu Xiang1ORCID,Zhang Qing1,Huang Yingping1,Wang Yanlan12,Wang Changlong3,Wu Yufeng3

Affiliation:

1. Engineering Research Center of Eco‐environment in Three Gorges Reservoir Region College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. China

2. Department of chemistry and chemical engineering Liaocheng University Liaocheng 252059 P. R. China

3. Institute of Circular Economy, Faculty of Materials and Manufacturing Beijing University of Technology Beijing 100124 P. R. China

Abstract

AbstractH2 generation from methanol‐water mixtures often requires high pressure and high temperature (200–300 °C). However, CO can be easily generated and poison the catalytic system under such high temperature. Therefore, it is highly desirable to develop the efficient catalytic systems for H2 production from methanol at room temperature, even at sub‐zero temperatures. Herein, carbon nanotube‐supported Pt nanocomposites are designed and synthesized as high‐performance nano‐catalysts, via stabilization of Pt nanoparticles onto carbon nanotube (CNT), for H2 production upon methanol dehydrogenation at sub‐zero temperatures. Therein, the optimal Pt/CNT nanocomposite presents the superior catalytic performance in H2 production upon methanol dehydrogenation at the expense of B2(OH)4, with the TOF of 299.51 min‐130 oC. Compared with other common carriers, Pt/CNT exhibited the highest catalytic performance in H2 production, emphasizing the critical role of CNT in methanol dehydrogenation. The confinement of Pt nanoparticles by CNTs is conducive to inhibiting the aggregation of Pt nanoparticles, thereby significantly increasing its catalytic performance and stability. The kinetic study, detailed mechanistic insights, and density functional theory (DFT) calculation confirm that the breaking of O─H bond of CH3OH is the rate‐controlling step for methanol dehydrogenation, and both H atoms of H2 are supplied by methanol. Interestingly, H2 is also successfully produced from methanol dehydrogenation at −10 °C, which absolutely solves the freezing problem in the H2 evolution upon water‐splitting reaction.

Funder

China Three Gorges University

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3