Urethral Microenvironment Adapted Sodium Alginate/Gelatin/Reduced Graphene Oxide Biomimetic Patch Improves Scarless Urethral Regeneration

Author:

Wang Liyang12,Wang Kai3,Yang Ming14,Yang Xi5,Li Danyang12,Liu Meng14,Niu Changmei5,Zhao Weixin6,Li Wenyao2,Fu Qiang14ORCID,Zhang Kaile14

Affiliation:

1. The Department of Urology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200233 P. R. China

2. School of Materials Science and Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China

3. Clinical Research Center Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China

4. Shanghai Eastern Institute of Urologic Reconstruction Shanghai 200000 P. R. China

5. Novaprint Therapeutics Suzhou Co., Ltd Suzhou 215000 P. R. China

6. Wake Forest Institute for Regenerative Medicine Winston‐Salem NC 27155 USA

Abstract

AbstractThe nasty urine microenvironment (UME) is an inherent obstacle that hinders urethral repair due to fibrosis and swelling of the oftentimes adopted hydrogel‐based biomaterials. Here, using reduced graphene oxide (rGO) along with double‐freeze‐drying to strengthen a 3D‐printed patch is reported to realize scarless urethral repair. The sodium alginate/gelatin/reduced graphene oxide (SA/Gel/rGO) biomaterial features tunable stiffness, degradation profile, and anti‐fibrosis performance. Interestingly, the 3D‐printed alginate‐containing composite scaffold is able to respond to Ca2+ present in the urine, leading to enhanced structural stability and strength as well as inhibiting swelling. The investigations present that the swelling behaviors, mechanical properties, and anti‐fibrosis efficacy of the SA/Gel/rGO patch can be modulated by varying the concentration of rGO. In particular, rGO in optimal concentration shows excellent cell viability, migration, and proliferation. In‐depth mechanistic studies reveal that the activation of cell proliferation and angiogenesis‐related proteins, along with inhibition of fibrosis‐related gene expressions, play an important role in scarless repair by the 3D‐printed SA/Gel/rGO patch via promoting urothelium growth, accelerating angiogenesis, and minimizing fibrosis in vivo. The proposed strategy has the potential of resolving the dilemma of necessary biomaterial stiffness and unwanted fibrosis in urethral repair.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3