Targeting Nr2e3 to Modulate Tet2 Expression: Therapeutic Potential for Depression Treatment

Author:

Ma Xiaohua12,Xu Shiyao2,Zhou Yaohui2,Zhang Qian2,Yang Hao3,Wan Bo2,Yang Yong4,Miao Zhigang2,Xu Xingshun125ORCID

Affiliation:

1. Department of Neurology the First Affiliated Hospital of Soochow University Suzhou 215000 China

2. Institute of Neuroscience Soochow University Suzhou 215123 China

3. Department of Fetology the First Affiliated Hospital of Soochow University Suzhou 215006 China

4. Department of Psychiatry the Affiliated Guangji Hospital of Soochow University Suzhou Jiangsu 215000 China

5. Jiangsu Key Laboratory of Neuropsychiatric Diseases Soochow University Suzhou Jiangsu 215123 China

Abstract

AbstractEpigenetic mechanisms such as DNA methylation and hydroxymethylation play a significant role in depression. This research has shown that Ten‐eleven translocation 2 (Tet2) deficiency prompts depression‐like behaviors, but Tet2's transcriptional regulation remains unclear. In the study, bioinformatics is used to identify nuclear receptor subfamily 2 group E member 3 (Nr2e3) as a potential Tet2 regulator. Nr2e3 is found to enhance Tet2's transcriptional activity by binding to its promoter region. Nr2e3 knockdown in mouse hippocampus leads to reduced Tet2 expression, depression‐like behaviors, decreased hydroxymethylation of synaptic genes, and downregulation of synaptic proteins like postsynaptic density 95 KDa (PSD95) and N‐methy‐d‐aspartate receptor 1 (NMDAR1). Fewer dendritic spines are also observed. Nr2e3 thus appears to play an antidepressant role under stress. In search of potential treatments, small molecule compounds to increase Nr2e3 expression are screened. Azacyclonal (AZA) is found to enhance the Nr2e3/Tet2 pathway and exhibited antidepressant effects in stressed mice, increasing PSD95 and NMDAR1 expression and dendritic spine density. This study illuminates Tet2's upstream regulatory mechanism, providing a new target for identifying early depression biomarkers and developing treatments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3