Affiliation:
1. Department of Physics and Integrative Institute of Basic Sciences Soongsil University Seoul 06978 Republic of Korea
Abstract
AbstractNeuromorphic computation draws inspiration from the remarkable features of the human brain including low energy consumption, parallelism, adaptivity, cognitive functions, and learning ability. These qualities hold the promise of unlocking groundbreaking computational techniques that surpass the limitations of traditional computing systems. This paper reports a remarkable photo‐synaptic behavior in the field of rare earth ion‐doped luminescent oxides by using long‐persistent luminescence (LPL). This system utilizes electron trap states to regulate the synaptic behavior, operating through a fundamentally different mechanism from that of electronic‐based synaptic devices. To realize this strategy, Tb3+ doped CaSnO3, which shows a significant LPL property under UV‐light excitation, is prepared. The luminescent system shows key neuromorphic characteristics such as paired‐pulse facilitation, pulse‐number/timing dependent potentiation, and pulse‐number/timing dependent short‐ to long‐term plasticity transition, which are required for realizing synaptic devices. This feature expands the way for advanced neuromorphic technologies employing light stimuli.
Funder
National Research Foundation of Korea
Ministry of Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献